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ABSTRACT
The nucleolus is a nuclear subcompartment for tightly regulated rRNA production and ribosome
subunit biogenesis. It also acts as a cellular stress sensor and can release enriched factors in response
to cellular stimuli. Accordingly, the content and structure of the nucleolus change dynamically, which
is particularly evident during cell cycle progression: the nucleolus completely disassembles during
mitosis and reassembles in interphase. Although the mechanisms that drive nucleolar (re)organization
have been the subject of a number of studies, they are only partly understood. Recently, we identified
Alu element-containing RNA polymerase II transcripts (aluRNAs) as important for nucleolar structure
and rRNA synthesis. Integrating these findings with studies on the liquid droplet-like nature of the
nucleolus leads us to propose a model on how RNA polymerase II transcripts could regulate the
assembly of the nucleolus in response to external stimuli and during cell cycle progression.
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The nucleolus is the cellular factory for producing
rRNAs (rRNAs) and assembling ribosome subunits.
In response to cellular stress and environmental
cues its activity and structure can change, and
enriched factors involved in cellular functions such
as cell cycle regulation, DNA repair or mRNA
processing can be released.1-6 The dynamic nature
of nucleolar structure and function is particularly
evident during cell cycle progression as reviewed
previously6,7: At the onset of mitosis nucleoli
completely disappear and rRNA production is
turned off. Following cell division, the nucleolus
reassembles and rRNA production is restarted.

To rationalize the plastic conformation of the nucleo-
lus, the model of a liquid droplet-like structure estab-
lished via a liquid-liquid phase separation process has
been proposed.8-10 This description accounts for the self-
assembly of the nucleolus as well as that of PML and
Cajal bodies, splicing speckles and other nuclear bodies.
The partitioning of the nucleus into organelles with spe-
cific activities cannot be explained by viewing the nucleus
simply as amembrane-confined container for the nucleo-
plasm – an aqueous solution with high concentrations of

proteins and nucleic acids macromolecules. At the same
time, the above nuclear subcompartments are variable in
size and shape and their constituting protein and RNA
components are in rapid exchange with factors from the
nucleoplasm.11 Thus, like in a liquid, molecules in these
nuclear subcompartments constantly rearrange. The
apparent similarity of this aspect of nuclear organization
with two liquids that do not mix and form separate
phases, as for example oil drops in water, has led to the
view that features of nuclear subcompartments within
the nucleoplasm can be described by a liquid-liquid phase
separation process as reviewed previously.12 Another
equivalent term used in this context is that of a liquid-
demixing phase separation.13 Within a cell, this process
frequently involves partially unstructured proteins,14 and
can be regulated by their interaction with RNA.15,16

When considered in the context of this physico-chemical
framework, our recent findings on the role of Alu ele-
ment-containing RNA polymerase (Pol) II transcripts in
nucleolus structure and function have a number of impli-
cations.17 They suggest that the interaction of RNA Pol II
transcripts with unstructured nucleolar protein shifts the
equilibrium between the two liquid phases, the nucleolus
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and the nucleoplasm and acts as a factor that affects the
(dis)assembly of the nucleolus. Based on these findings,
we discuss here how these RNA-protein interactions
could be modulated in the cell to provide an additional
regulatory layer for controlling structure and function of
the nucleolus.

RNA-driven nuclear subcompartment assembly
and maintenance

In the past few years, several studies have illustrated
the ability of specific coding and non-coding RNA
transcripts to initiate the formation of nuclear bodies.
In a number of these, cell lines that had lacO opera-
tor repeats stably integrated into their genome were
used to tether specific RNAs to these genomic loci.
The RNA transcripts containing several MS2 stem-
loops were bound to the lacO arrays via the high
affinity MS2 coat protein fused to lac repressor. For
example, it was reported that tethering the replica-
tion-dependent histone gene H2B RNA to lacO oper-
ator repeats array induced the formation of histone
locus bodies-associated Cajal bodies and the accumu-
lation of coilin, a Cajal body-associated protein.18

The same study found that b-globin transcripts teth-
ered to lacO arrays formed de novo speckles as iden-
tified by the enrichment of the serine-arginin rich
splicing factor SC35, a nuclear speckle-associated
protein. In addition, the lacO-bound non-coding
RNA NEAT1 triggered the formation of de novo par-
aspeckles, which were associated to paraspeckle-spe-
cific proteins such as PSP1, NONO and PSF.18,19

Likewise, lacO-tethered non-coding satellite III repeat
RNA recruited several proteins associated to nuclear
stress bodies, for example heat shock-specific tran-
scription factor HSF1 or the splicing factor SF2/
ASF.18 These results suggest that specific RNA tran-
scripts can serve as a structural scaffold for the
assembly of various nuclear subcompartments.

In our recent work, a related RNA-mediated assembly
process was proposed for the organization of the nucleo-
lus.17,20 Both the inhibition of Pol I and II induced struc-
tural changes in the nucleolus. However, a dispersion of
nucleolar domains throughout the nucleoplasm was spe-
cific for Pol II inhibition. By analyzing the RNA content
of the nucleolus, we found that it was enriched inAlu ele-
ment-containing RNA transcripts (aluRNAs) originating
from intronic regions of Pol II transcribed genes.We also
found that depletion of aluRNAs led to the same

dispersion phenotype of the nucleolus as Pol II inhibition.
Furthermore, overexpression of aluRNAs resulted in
larger nucleoli suggesting that the nucleolus size and the
available amount of Pol II-produced aluRNAs were
linked. Inhibition of Pol II or depletion of aluRNAs not
only resulted in nucleoli dispersion, but also induced a
strong reduction of Pol I transcriptional activity. This
supports the view that nucleolus structure and function
are closely connected as discussed previously.21 In addi-
tion, our study points to an RNA polymerase ‘cross-talk’
where the product of Pol II transcription influences the
transcriptional activity of Pol I and the maintenance of
the nucleolar subcompartment.

RNA-driven liquid-liquid phase separation
during nucleolus formation

To describe the principles underlying the dynamic
organization of the nucleolus the model of a liquid-liquid
phase separation has been applied, where liquid
droplet-like structures become separated from the nucle-
oplasm.8-10 Furthermore, a mechanism has been pro-
posed according to which this type of liquid-liquid phase
separation involves unstructured domains in RNA-bind-
ing proteins.16 The latter are referred to as low complexity
domains or intrinsically disordered domains.16,22

Although liquid droplet-like structures form also in the
absence of RNA, it was recently shown that the presence
of RNA could induce such a phase separation at much
lower protein concentration. The presence of a short
RNA sequence from the promoter region of DNMT3b
efficiently induced FUS (fused in sarcoma) protein self-
assembly, a process that was also observed at much
higher concentrations of FUS in absence of RNA.23 In
addition, a study by Zhang et al. showed that specific
mRNAs driveWhi3 (a known RNA-binding protein and
regulator of the cell cycle) assembly into droplets with
distinct biophysical properties that were dependent on
the mRNA transcript.24 Thus, RNAs binding to an
unstructured protein domain can promote liquid drop-
let-like assembly by shifting the equilibrium toward pro-
tein association.

As shown in our recent work, aluRNAs interacts with
at least three nucleolar proteins, nucleolin (NCL), nucleo-
phosmin (NPM) and fibrillarin, which are essential for
nucleolus structure and function.25-27 All three of them
contain unstructured domains. The C-terminal region of
NCL28 and fibrillarin29 both contain a low complexity
domain, a glycin-arginine rich (GAR) domain, which is
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reported to interact with RNA transcripts.30 NPM con-
tains basic and acidic sequences, which were reported to
be intrinsically disordered and to regulate its interaction
with RNA.31 For NCL and NPM, their unstructured
domains were linked to the ability of the proteins to self-
associate,29,32 which is an essential part of the process of
liquid droplet formation.13,16 These known properties of
NCL, NPM and fibrillarin led us to propose that
aluRNAs support nucleolar assembly by interacting with
those proteins and promoting a liquid-liquid phase sepa-
ration. In support of this view, recent in vitro work has
shown the ability of fibrillarin to phase-separate at lower
concentrations if yeast RNA was present.10 It was also
demonstrated that the RNA-binding domains and the
GAR domain of NCL are important for its localization to
the nucleolus.33,34 This could mean that those domains
are important for the protein to phase-separate in an
RNA-dependentmanner.

Remarkably, some specific proteins found in the
RNA-enriched nuclear bodies mentioned above also
contain disordered domains as for example coilin in
Cajal bodies,35 which was also reported to self-associ-
ate.36 In paraspeckles, the N- and C-terminal regions
of PSP1, NONO, and PSF are predicted to be disor-
dered,37 and in speckles, SC35 can self-associate36 and
contains a serine-arginine rich domain,38 which like
the GAR domain is a low complexity domain. Inter-
estingly, a recent study by Frege et al.39 reported the
presence of intrinsically disordered proteins in many
membrane-less nuclear subcompartments. This sug-
gests that a mechanism based on RNA-protein inter-
action-mediated liquid-liquid phase separation could
also promote the assembly of other RNA-containing
nuclear bodies.

RNA pol II transcripts during cell
cycle-dependent nucleolus (dis)assembly

In our recent work, we focused on the effect of
depleting or overexpressing aluRNAs on nucleoli
during the interphase of the cell cycle. This raises
the question whether aluRNAs or other Pol II tran-
scripts could also be relevant for the disassembly of
nucleoli at the onset of mitosis and their reassem-
bly at the end of cell division. By tracing the loca-
tion of the NCL and NPM nucleolar marker
proteins during the cell-cycle the (dis)assembly of
nucleoli has been dissected in a number of studies,
e.g. refs. 26,40 In Figure 1 we have reproduced these

experiments via simultaneous visualization of the
NCL and NPM distributions in HeLa cells to illus-
trate that this process involves droplet-like nucleo-
lar substructures. At telophase, the NCL and NPM
images indicated that nucleoli were still disrupted.
During cytokinesis some accumulation into areas
was observed for NCL and to a lesser extend also
for NPM, while fully assembled nucleoli with co-
localization of NCL and NPM were only present
during interphase.

If Pol II transcripts are essential for nucleolus forma-
tion, the inhibition of Pol II during mitosis and early
interphase should prevent the proper assembly of
nucleoli after mitosis completion. To test this hypothe-
sis, we synchronized cell by thymidine block41 followed
by a nocodazole block. During nocodazole block, cells
were treated with specific Pol I (low concentration of
actinomycin D) and Pol II (low concentration of
a-amanitin) inhibitors for 5 hours as well as with the
protein translation inhibitor cycloheximide. During this
treatment, cells remained blocked in prometaphase, the
chromosomes were condensed but not aligned due to
the lack of microtubules. Without inhibitor as well as
in presence of actinomycin D, a-amanitin, and cyclo-
heximide, the nucleoli remained disassembled and the
NCL and NPM marker proteins redistributed to the
chromatin free regions of the cell (Fig. 2A). Next, noco-
dazole was washed out and cells were further incubated
with the respective Pol I or Pol II inhibitors, or transla-
tion inhibitor. The cells progressed normally to form
the metaphase plate (Fig. 2B). The inhibition of Pol I
did not prevent the formation of nucleoli, as reported
previously,42 which still contained both NCL and NPM
(Fig. 2C). For some of the cells, additional NCL dots
formed in the nucleoplasm, which were not co-localiz-
ing with NPM. These nucleoplasmic foci might origi-
nate from aberrant accumulation of NCL that could
not be integrated into nucleoli due to Pol I inhibition.
In contrast to this relatively minor structural pheno-
type, cells treated with a Pol II inhibitor completely
failed to form nucleoli after release of the nocodazole
block and nucleolar particles remained dispersed
(Fig. 2C). In addition, a previous study reported that
roscovitine, another inhibitor of Pol II transcription,43

impaired post-mitotic nucleolus assembly.44 The phe-
notype of persistent dispersed nucleolar subdomains
observed upon Pol II inhibition did not appear to be
due to a lack of protein synthesis (Fig. 2C). The inhibi-
tion of protein translation for several hours did not
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give rise to disintegrated nucleolar subdomains. Taken
together, these observations suggest that Pol II tran-
scription and the resulting Pol II transcripts such as
aluRNAs could be important for the post-mitotic

assembly of nucleoli. However, to corroborate this con-
clusion one would have to dissect the role of specific
Pol II transcripts in further experiments to exclude
indirect effects of the global Pol II transcription.

Figure 1. Cell cycle-dependent structural changes of the nucleolus. Confocal laser scanning microscopy (CLSM) images showing the
nucleolar marker proteins nucleolin (NCL, red, stably expressed RFP-NCL) and nucleophosmin (NPM, green, immunofluorescence) with
DNA (DAPI, blue) counterstaining in U2OS cells at different stages of the cell cycle. As evident from the NCL and NPM distribution, nucle-
oli are still completely disrupted during telophase and fully assembled during interphase. Scale bars, 10 mm.
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Regulation of RNA-driven liquid-liquid
phase separation

For a phase separation process, the concentration of
the various components is a critical parameter as illus-
trated by studies showing that droplet-like assembly
only occurred above a critical concentration.10,23,24,45

This parameter could be regulated in the cell by nucle-
ocytoplasmic transport processes and cellular turnover
of the macromolecules involved and potentially com-
peting binding partners. For RNA-driven liquid dem-
ixing phase separation systems, the interaction of

RNA transcripts with specific protein partners might
be required to reach critical phase separation condi-
tions in vivo, e.g., to allow for droplet formation and
assembly at physiological protein concentrations
lower than those needed in in vitro studies. In such a
system, any perturbation of RNA-protein interaction
would result in the dispersion of the droplets, their
dissolution and redistribution of the liquid phases.

At the onset of mitosis, the nuclear envelope breaks
down, nucleoplasm and cytoplasm mix rapidly and
nuclear factors become diluted. Furthermore, Pol II

Figure 2. Impaired post mitosis nucleolus assembly through Pol II inhibition. (A) CLSM images showing NCL (red, stably expressed RFP-
NCL), NPM (green, immunofluorescence) and DNA (DAPI) in U2OS cells treated with nocodazole (100 ng/ml) and either actinomycin D
(50 ng/ml), a-amanitin (50 mg/ml) or cycloheximide (50 mg/ml) for 5 h. (B) Cells 60 min after they were released from the nocodazole
block. (C) Cells 180 min after they were released from the nocodazole block. Scale bars, 10 mm.
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transcription is strongly reduced during mitosis.46

Thus, the concentration of nuclear protein and RNA
components might drop below the critical concentra-
tion required for a liquid-liquid phase separation pro-
cess. In addition, nuclear proteins become more
accessible and can be bound at their nuclear localiza-
tion signal47 (NLS) by proteins of the importin fam-
ily.48 It is well established that interaction of importins
with the NLS part of a protein can interfere with the
function of the protein49 and possibly also with its
RNA-binding ability. As the nuclear envelope reas-
sembles, NLSs are released from importins in the
nucleus and proteins are no longer inhibited from per-
forming their nuclear functions. In support of this
view, the nucleolus assembly correlates with post-
mitotic nuclear envelope formation.50

Another factor that could influence droplet formation
and assembly are posttranslational modifications of the
proteins involved. Phosphorylation, for example, has
been shown to regulate the interaction of intrinsically dis-
ordered domains with RNA13,51 and to influence the abil-
ity of intrinsically disordered protein to phase
separate.16,52 Moreover, other posttranscriptional modifi-
cations like acetylation, methylation or sumoylation
could alter the RNA binding potential of a protein53 or
modify its localization.54 Such a regulatory mechanism
might apply also for the nucleolus. It was proposed that
phosphorylation of an abundant nucleolar protein may
drive the cell cycle nucleolus (dis-)assembly dynamics.52

The major cell cycle switch at the onset of mitosis is the
activation of the cyclin-dependent kinase CDC2.55 Inter-
estingly, both NCL and NPM are strongly regulated via
phosphorylation and are phosphorylated by CDC2 at the
onset of mitosis.56-58 Furthermore, it was reported that
phosphorylation controls the localization of NCL with
translocation of mitotic phosphorylated NCL to the cyto-
plasm59 and that phosphorylation of NPM prevents the
protein to interact with RNA.57 This suggests that mitotic
phosphorylation of these proteins by CDC2 could inhibit
nucleolar assembly by either acting negatively on the abil-
ity of NCL and NPM to associate to RNA or by blocking
further association of these proteins when bound to
RNA.

Model for RNA-dependent nucleolar assembly

A model for an aluRNA-dependent mechanism that
drives changes of nucleolar structure including the
disassembly at mitosis and reassembly at interphase is

depicted in Figure 3. At the onset of mitosis, the nucle-
olus disassembles, which correlates with the arrest of
Pol I transcriptional activity. However, the absence of
Pol I activity during mitosis and the restart of rRNA
production at the end of cell division are not sufficient
to explain these structural changes. Indeed, nucleoli
assembly can occur in the presence of Pol I specific
inhibitors as shown in Figure 2A and as previously
reported.42 This process is strongly inhibited by treat-
ment with Pol II inhibitors17 and during mitosis
(Fig. 2C) where the assembly stops at the stage of
nucleolar droplets. For the nucleation of such droplets,
rRNA may be crucial as suggested in recent stud-
ies.10,60 However, these relatively small prenucleolar
bodies containing NCL and NPM appear to require the
association with Pol II aluRNA transcripts as the “glue”
to assemble them into larger domains. In the absence of
the latter RNAs the coalescence step required to achieve
the liquid-liquid phase separation does not occur
(Fig. 3A) and prevents proper post-mitotic reassembly
of the nucleoli (Fig. 2C). Accordingly, we propose that
the interaction of nucleolar proteins as for example
NCL and NPM with RNA Pol II transcripts drives
nucleolar assembly in a cell cycle-dependent manner
(Fig. 3B). This process could involve phosphorylation-
dependent RNA-protein interactions.

Concluding remarks

Increasing evidence points to RNA as an important factor
for proper formation of nuclear subcompartments and
intact chromatin structure.61-63 The assembly of an
RNA-dependent nuclear scaffold induces the local
enrichment of effector molecules and their associated
activities for efficient and controlled reactions in the
nucleus.64 The concept of (dis)assembly of the nucleolus
driven by RNA interaction with intrinsically disordered
domains of nucleolar proteins might also apply to other
nuclear bodies.39,65,66 Modulating these RNA-protein
interactions during the cell cycle appears to be a regula-
tion principle that is relevant not only for the nucleolus
but also in other systems: (i) Phosphorylation affects coi-
lin protein activity and its association with RNA in Cajal
bodies differently in mitosis as compared to inter-
phase.67,68 (ii) The assembly of histone locus bodies
occurs in an RNA-dependent manner and changes from
G1 to S phase as reviewed recently.69 (iii) Phosphoryla-
tion of the PRC2 (Polycomb Repressive Complex 2)
component EZH2 is cell cycle-regulated and up-regulates
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its ability to bind RNA.70 This could be relevant for the
formation and composition of distinct subnuclear foci
containing PRC complexes and referred to as polycomb
bodies.71

In addition, the RNA-dependent composition of
nuclear subcompartments can be modulated indepen-
dently of the cell cycle. Indeed, external stimuli like for
example growth signals as demonstrated previously by
Yang et al.72 can have similar effects. In the latter study it
was found that the activity of polycomb bodies and inter-
chromatin granules/SC35-containing splicing domains is
controlled by the RNA-binding specificities of the

polycomb complex Pc2 protein in dependence of its
methylation state. The switch of Pc2 interactions between
the TUG1 and MALALT1/NEAT2 non-coding RNAs
affected the three-dimensional location of transcription
units and the coordinated regulation of gene expression
programs.

Deregulation of nuclear subcompartment organiza-
tion is also linked to pathological phenotypes including
cancer and neurodegenerative disorders.6,73,74 For exam-
ple, highly proliferating tumor cells harbor larger and
more active nucleoli for increased rRNAs and ribosome
production.75 On the other hand, cells from patients

Figure 3. Model for RNA and cell cycle-dependent (dis)assembly of the nucleolus. (A) Scheme of RNA-driven liquid-liquid phase separa-
tion of the nucleolus. The interaction of nucleolar proteins like NCL or NPM (blue and green respectively) with aluRNAs might trigger a
conformational change of their unstructured regions that drives the assembly of nucleolar subdomains via a liquid-liquid phase separa-
tion process into larger domains representing functional nucleoli. Depletion of aluRNAs induces a change of this equilibrium back into
the dispersed state with small nucleolar droplets. (B) As illustrated in the enclosed scheme, assembly and disassembly of the nucleolus
are dependent on the interactions between RNA transcripts (aluRNAs) and proteins (NCL, NPM). The RNA-protein assemblies form nucle-
olar domains that associate with rDNA and efficiently support Pol I transcriptional activity. Protein-RNA interactions could be dependent
on the cell cycle state, which affects posttranslational modifications of the proteins, changes in their concentration and/or exposition to
competing interacting species, like for example binding of importins to their NLS. Thereby, the formation of RNA-protein assemblies
could be coupled to specific cell cycle phases.
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suffering from neurodegenerative diseases often present
less active nucleoli with structural aberrations.76 Accord-
ingly, there is a renewed interest for using the nucleolus
as a potential target for therapeutic treatments of cancer
and other diseases.77,78 It becomes clear that further eluci-
dating the regulation of RNA-protein interactions is cru-
cial to understand the mechanisms underlying the
assembly dynamics and the activities of the nucleolus as
well as those of other nuclear bodies. Thus, further work
in this direction will allow making progress in the identi-
fication of key regulators, risk factors and potential thera-
peutic targets.
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